Ma

Bipartite Kneser graphs are Hamiltonian

Date
Jul 17, 2015
Time
1:15 PM - 2:15 PM
Speaker
Dr. Torsten Muetze
Affiliation
ETH Zuerich
Language
en
Main Topic
Mathematik
Other Topics
Mathematik
Host
Jun.-Prof. Dr. Martin Schneider
Description
For integers k>=1 and n>=2k+1, the bipartite Kneser graph H(n,k) is defined as the graph that has as vertices all k-element and all (n-k)-element subsets of {1,2,...,n}, with an edge between any two vertices (=sets) where one is a subset of the other. It has long been conjectured that all bipartite Kneser graphs have a Hamilton cycle, i.e., a cycle that visits every vertex exactly once. The special case of this conjecture concerning the Hamiltonicity of the graph H(2k+1,k) became known as the 'middle levels conjecture' or 'revolving door conjecture', and has attracted particular attention over the last 30 years. One of the motivations for tackling these problems is an even more general conjecture due to Lovász, which asserts that in fact every connected vertex-transitive graph (as e.g. H(n,k)) has a Hamilton cycle (apart from five exceptional graphs). Last year I presented a rather technical proof of the middle levels conjecture in the seminar. In this talk I present a simple and short proof that all bipartite Kneser graphs H(n,k) have a Hamilton cycle, assuming that H(2k+1,k) has one. No prior knowledge will be assumed for this talk.
Links

Last modified: Jul 17, 2015, 1:14:04 PM

Location

TUD Willers-Bau (WIL C 115)Zellescher Weg12-1401069Dresden
Homepage
https://navigator.tu-dresden.de/etplan/wil/00

Organizer

TUD MathematikWillersbau, Zellescher Weg12-1401069Dresden
Phone
49-351-463 33376
Homepage
http://tu-dresden.de/mathematik
Scan this code with your smartphone and get directly this event in your calendar. Increase the image size by clicking on the QR-Code if you have problems to scan it.
  • BiBiology
  • ChChemistry
  • CiCivil Eng., Architecture
  • CoComputer Science
  • EcEconomics
  • ElElectrical and Computer Eng.
  • EnEnvironmental Sciences
  • Sfor Pupils
  • LaLaw
  • CuLinguistics, Literature and Culture
  • MtMaterials
  • MaMathematics
  • McMechanical Engineering
  • MeMedicine
  • PhPhysics
  • PsPsychology
  • SoSociety, Philosophy, Education
  • SpSpin-off/Transfer
  • TrTraffic
  • TgTraining
  • WlWelcome