Ma

Bipartite Kneser graphs are Hamiltonian

Datum
17.07.2015
Zeit
13:15 - 14:15
Sprecher
Dr. Torsten Muetze
Zugehörigkeit
ETH Zuerich
Sprache
en
Hauptthema
Mathematik
Andere Themen
Mathematik
Host
Jun.-Prof. Dr. Martin Schneider
Beschreibung
For integers k>=1 and n>=2k+1, the bipartite Kneser graph H(n,k) is defined as the graph that has as vertices all k-element and all (n-k)-element subsets of {1,2,...,n}, with an edge between any two vertices (=sets) where one is a subset of the other. It has long been conjectured that all bipartite Kneser graphs have a Hamilton cycle, i.e., a cycle that visits every vertex exactly once. The special case of this conjecture concerning the Hamiltonicity of the graph H(2k+1,k) became known as the 'middle levels conjecture' or 'revolving door conjecture', and has attracted particular attention over the last 30 years. One of the motivations for tackling these problems is an even more general conjecture due to Lovász, which asserts that in fact every connected vertex-transitive graph (as e.g. H(n,k)) has a Hamilton cycle (apart from five exceptional graphs). Last year I presented a rather technical proof of the middle levels conjecture in the seminar. In this talk I present a simple and short proof that all bipartite Kneser graphs H(n,k) have a Hamilton cycle, assuming that H(2k+1,k) has one. No prior knowledge will be assumed for this talk.
Links

Letztmalig verändert: 17.07.2015, 13:14:04

Veranstaltungsort

TUD Willers-Bau (WIL C 115)Zellescher Weg12-1401069Dresden
Homepage
https://navigator.tu-dresden.de/etplan/wil/00

Veranstalter

TUD MathematikWillersbau, Zellescher Weg12-1401069Dresden
Telefon
49-351-463 33376
Homepage
http://tu-dresden.de/mathematik
Scannen Sie diesen Code mit Ihrem Smartphone and bekommen Sie die Veranstaltung direkt in Ihren Kalender. Sollten Sie Probleme beim Scannen haben, vergrößern Sie den Code durch Klicken darauf.
  • AuAusgründung/Transfer
  • BaBauing., Architektur
  • BiBiologie
  • ChChemie
  • ElElektro- u. Informationstechnik
  • Sfür Schüler:innen
  • GsGesellschaft, Philos., Erzieh.
  • InInformatik
  • JuJura
  • MwMaschinenwesen
  • MtMaterialien
  • MaMathematik
  • MeMedizin
  • PhPhysik
  • PsPsychologie
  • KuSprache, Literatur und Kultur
  • UmUmwelt
  • VeVerkehr
  • WeWeiterbildung
  • WlWillkommen
  • WiWirtschaft