Ph

First principles simulations of electron-phonon coupling and thermoelectric transport in PbTe

Date
Oct 10, 2024
Time
1:00 PM - 3:00 PM
Speaker
Ivana Savic
Affiliation
Department of Physics, King's College London
Series
TUD nanoSeminar
Language
en
Main Topic
Physik
Other Topics
Physik
Host
Arezoo Dianat
Description
I will describe our recent development of a first principles thermoelectric transport model based on the Boltzmann transport theory and its application to the classic high-performing thermoelectric material PbTe [1,2]. Unlike nowadays standard methods which calculate electron-phonon matrix elements in the entire Brillouin zone using density functional perturbation theory and Wannier/Fourier interpolation [3], our model makes use of deformation potential theory, which dramatically reduces the number of electron-phonon matrix elements that need to be computed. This development is important for narrow-gap semiconductors such as PbTe, where the band structures are often inaccurately captured by density functional theory, and the effects of electron correlations on electron-phonon matrix elements might be necessary to include [4]. 
 
 Regarding the physical effects, I will show that soft transverse optical modes are the key to the high thermoelectric figure of merit of PbTe: they preserve its high electronic conductivity while suppressing the lattice thermal conductivity [1]. I will also present our recently developed understanding of the role of intervalley scattering in establishing the high thermoelectric figure of merit of p-type PbTe [2,5].
 
 [1] J. Cao, J. D. Querales-Flores, A. R. Murphy, S. Fahy, and I. Savic, Phys. Rev. B, 98, 205202 (2018)
 [2] R. D'Souza, J. Cao, J. D. Querales-Flores, S. Fahy, and I. Savic, Phys. Rev. B 102, 115204 (2020)
 [3] S. Ponce, E. R. Margine, C. Verdi, and F. Giustino, Comput. Phys. Commun. 209, 116 (2016)
 [4] A. R. Murphy, F. Murphy-Armando, S. Fahy, and I. Savic, Phys. Rev. B 98, 085201 (2018)
 [5] R. D'Souza, J. D. Querales-Flores, J. Cao, S. Fahy, and I. Savic, ACS Appl. Energy Mater. 5, 7260 (2022)
Links

Last modified: Oct 11, 2024, 7:41:04 AM

Location

TUD Materials Science - HAL (HAL Bürogebäude - 115)Hallwachsstraße301069Dresden
Homepage
https://navigator.tu-dresden.de/etplan/hal/00

Organizer

TUD Institute for Materials ScienceHallwachsstr.301069Dresden
Scan this code with your smartphone and get directly this event in your calendar. Increase the image size by clicking on the QR-Code if you have problems to scan it.
  • BiBiology
  • ChChemistry
  • CiCivil Eng., Architecture
  • CoComputer Science
  • EcEconomics
  • ElElectrical and Computer Eng.
  • EnEnvironmental Sciences
  • Sfor Pupils
  • LaLaw
  • CuLinguistics, Literature and Culture
  • MtMaterials
  • MaMathematics
  • McMechanical Engineering
  • MeMedicine
  • PhPhysics
  • PsPsychology
  • SoSociety, Philosophy, Education
  • SpSpin-off/Transfer
  • TrTraffic
  • TgTraining
  • WlWelcome