Wl

Festkolloquium: Verleihung des 2. Dresdner Promotionspreises Physik an Dr. Ruben Verresen und Dr. Urban Seifert

Date
Jan 5, 2021
Time
4:40 PM - 7:00 PM
Language
en
Main Topic
Willkommen
Other Topics
Willkommen
Description

Einladungs-PDF zur Veranstaltung: pdf-Download (https://tu-dresden.de/mn/physik/ressourcen/dateien/physikalisches-kolloquium/2021-01-05-Phys_Kolloq-Festveranstaltung-Promotionspreis-Physik-WiSe2020.pdf).

Dr. Ruben Verresen: Schrödinger's Phoenix A quantum system can occupy multiple states at once. In particular, an unstable particle can be in a quantum superposition with its decay product---used by Schrödinger in his famous thought experiment of a cat suspended between life and death. In this talk, we identify a new surprising feature: increasing the likelihood of particle decay can, paradoxically, prevent and even undo its disintegration. More figuratively, Schrödinger’s cat can resurrect like a phoenix from the ashes. We show how this phenomenon of avoided decay gives new insights into many- body quantum systems, since their low-temperature properties are largely determined by the (in)stability of emergent quasiparticles. Due to recent advances in experimental techniques and tensor network simulations, this novel phenomenon can be observed in quantum materials.

Dr. Urban Seifert: Interplay of a quantum spin liquid and a metal: Fractionalized Fermi liquids and exotic superconductivity Quantum spin liquids are fascinating states of magnetic matter which evade a description in terms of symmetry-breaking order, and are rather characterized by their entanglement structure which can support fractionalized quasiparticles. With candidate materials at hand, recent experimental developments suggest the possibility of designing heterostructures in which these couple to additional degrees of freedom. A key question then pertains to novel phases stabilized in these systems. In this spirit, I will consider the Kitaev Kondo lattice, where conduction electrons are coupled to local moments which form Kitaev’s exactly solvable model of a quantum spin liquid. At small Kondo couplings we find a fractionalized Fermi liquid (FL*), a stable metallic state outside the Fermi-liquid paradigm. At the transition between FL* and a conventional Fermi liquid a superconducting phase occurs which inherits its nematic triplet pairing structure from the spin liquid.

Links

Last modified: Jan 5, 2021, 12:08:24 AM

Location

TUD
Homepage
https://navigator.tu-dresden.de/

Organizer

Andere Einrichtungen der TU Dresden, c/o Dezernat Forschungsförderung und TransferWeißbachstr.701062Dresden
Phone
+49 351 463-32583
Fax
+49 351 463-37802
E-Mail
TUD Andere
Homepage
http://www.tu-dresden.de
Scan this code with your smartphone and get directly this event in your calendar. Increase the image size by clicking on the QR-Code if you have problems to scan it.
  • BiBiology
  • ChChemistry
  • CiCivil Eng., Architecture
  • CoComputer Science
  • EcEconomics
  • ElElectrical and Computer Eng.
  • EnEnvironmental Sciences
  • Sfor Pupils
  • LaLaw
  • CuLinguistics, Literature and Culture
  • MtMaterials
  • MaMathematics
  • McMechanical Engineering
  • MeMedicine
  • PhPhysics
  • PsPsychology
  • SoSociety, Philosophy, Education
  • SpSpin-off/Transfer
  • TrTraffic
  • TgTraining
  • WlWelcome