Locally Moving Clones
- Datum
- 23.10.2015
- Zeit
- 13:15 - 14:15
- Sprecher
- Dr. Robert Barham
- Zugehörigkeit
- TU Dresden, Institut für Algebra
- Sprache
- en
- Hauptthema
- Mathematik
- Andere Themen
- Mathematik
- Host
- Jun.-Prof. Dr. Martin Schneider
- Beschreibung
- A locally moving group is a group that acts on a complete atomless Boolean algebra in a special way. These were introduced by M. Rubin to study reconstruction from automorphism groups. A locally moving clone is a clone where: 1. the group of invertible elements is a locally moving group; and 2. there are enough `algebraically canonical' elements. After defining these things fully, I will prove that every locally moving polymorphism clone has automatic homeomorphicity with respect to all polymorphism clones, and that if (Q,L) is a reduct of the rationals such that: 1. Aut(Q,L) is not the symmetric group; and 2. End(Q,L)=Emb(Q,L), then Pol(Q,L) is locally moving.
- Links
Letztmalig verändert: 06.10.2015, 12:40:17
Veranstaltungsort
TUD Willers-Bau (WIL C 115)Zellescher Weg12-1401069Dresden
- Homepage
- https://navigator.tu-dresden.de/etplan/wil/00
Veranstalter
TUD MathematikWillersbau, Zellescher Weg12-1401069Dresden
- Telefon
- 49-351-463 33376
- Homepage
- http://tu-dresden.de/mathematik
Legende
- Ausgründung/Transfer
- Bauing., Architektur
- Biologie
- Chemie
- Elektro- u. Informationstechnik
- für Schüler:innen
- Gesellschaft, Philos., Erzieh.
- Informatik
- Jura
- Maschinenwesen
- Materialien
- Mathematik
- Medizin
- Physik
- Psychologie
- Sprache, Literatur und Kultur
- Umwelt
- Verkehr
- Weiterbildung
- Willkommen
- Wirtschaft