Spectral convergence of Laplacians on dense hypergraph sequences
- Datum
- 11.12.2025
- Zeit
- 15:00 - 16:00
- Sprecher
- Sjoerd Van der Niet
- Zugehörigkeit
- Renyi Institute Budapest, TU Munich
- Sprache
- en
- Hauptthema
- Biologie
- Host
- Local Organisers: Nikola Sadovek, Maximilian Wiesmann, Giulio Zucal
- Beschreibung
- Higher-order networks have become a popular tool in the network science community to model dynamics such as synchronization and diffusion. The linearized system often depends on a Laplacian operator and its spectral properties. We introduce a Laplacian operator for uniform hypergraphs and study the limiting operator for an increasing sequence of dense uniform hypergraphs using the theory of graph limits. Although a theory of dense hypergraph limits has been developed by Elek and Szegedy, and independently Zhao, not much of its implications to spectral properties is known. We show that a weaker notion of convergence for the sequence of hypergraphs is sufficient to obtain pointwise convergence of the spectrum of the Laplacians.
Letztmalig verändert: 08.12.2025, 07:35:16
Veranstaltungsort
Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG CSBD SR Top Floor (VC))Pfotenhauerstraße10801307Dresden
- Telefon
- +49 351 210-0
- Fax
- +49 351 210-2000
- MPI-CBG
- Homepage
- http://www.mpi-cbg.de
Veranstalter
Max Planck Institute of Molecular Cell Biology and GeneticsPfotenhauerstraße10801307Dresden
- Telefon
- +49 351 210-0
- Fax
- +49 351 210-2000
- MPI-CBG
- Homepage
- http://www.mpi-cbg.de
Legende
- Ausgründung/Transfer
- Bauing., Architektur
- Biologie
- Chemie
- Elektro- u. Informationstechnik
- für Schüler:innen
- Gesellschaft, Philos., Erzieh.
- Informatik
- Jura
- Maschinenwesen
- Materialien
- Mathematik
- Medizin
- Physik
- Psychologie
- Sprache, Literatur und Kultur
- Umwelt
- Verkehr
- Weiterbildung
- Willkommen
- Wirtschaft
