Causal Inference from Observational Data in Partially Understood Domains
- Datum
- 30.08.2022
- Zeit
- 13:00 - 14:00
- Sprecher
- Adèle Ribeiro
- Zugehörigkeit
- Causal AI Lab, Columbia University
- Sprache
- en
- Hauptthema
- Biologie
- Host
- Ivo Sbalzarini
- Beschreibung
- One pervasive task found throughout the empirical sciences is to determine the effect of interventions from observational (non-experimental) data. It is well-understood that assumptions are necessary to perform causal inferences, which are commonly articulated through causal diagrams (Pearl, 2000). Despite the power of this approach, there are settings where the knowledge necessary to fully specify a causal diagram may not be available, particularly in complex, high-dimensional domains. In this talk, I will present two novel causal effect identification approaches that relax the stringent requirement of fully specifying a causal diagram. The first is a new graphical modeling tool called cluster DAGs (for short, C-DAGs) that allows for the specification of relationships among clusters of variables, while the relationships between the variables within a cluster are left unspecified. The second includes a complete calculus and algorithm for effect identification from a Partial Ancestral Graph (PAG), which represents a Markov equivalence class of causal diagrams, learnable from observational data. These approaches are expected to help researchers and data scientists to identify novel effects in real-world domains, where knowledge is largely unavailable and coarse.
Letztmalig verändert: 31.08.2022, 00:05:29
Veranstaltungsort
Max Planck Institute of Molecular Cell Biology and Genetics (CSBD SR Top Floor)Pfotenhauerstraße10801307Dresden
- Telefon
- +49 351 210-0
- Fax
- +49 351 210-2000
- MPI-CBG
- Homepage
- http://www.mpi-cbg.de
Veranstalter
Max Planck Institute of Molecular Cell Biology and GeneticsPfotenhauerstraße10801307Dresden
- Telefon
- +49 351 210-0
- Fax
- +49 351 210-2000
- MPI-CBG
- Homepage
- http://www.mpi-cbg.de
Legende
- Ausgründung/Transfer
- Bauing., Architektur
- Biologie
- Chemie
- Elektro- u. Informationstechnik
- für Schüler:innen
- Gesellschaft, Philos., Erzieh.
- Informatik
- Jura
- Maschinenwesen
- Materialien
- Mathematik
- Medizin
- Physik
- Psychologie
- Sprache, Literatur und Kultur
- Umwelt
- Verkehr
- Weiterbildung
- Willkommen
- Wirtschaft