Colloquium: Tensor Network Machine Learning Models
- Datum
- 18.06.2018
- Zeit
- 16:30 - 17:30
- Sprecher
- Dr. Edwin Miles Stoudenmire
- Zugehörigkeit
- Flatiron Institute, Center for Computational Quantum Physics, New York, USA
- Serie
- MPI-PKS Kolloquium
- Sprache
- en
- Hauptthema
- Physik
- Andere Themen
- Physik
- Beschreibung
- Tensor networks are an efficient representation of interesting many-body wavefunctions and underpin powerful algorithms for strongly correlated systems. But tensor networks could be applied much more broadly than just for representing wavefunctions. Large tensors similar to wavefunctions appear naturally in certain families of models studied extensively in machine learning. Decomposing the model parameters as a tensor network leads to interesting algorithms for training models on real-world data which scale better than existing approaches. In addition to training models directly for recognizing labeled data, tensor network real-space renormalization approaches can be used to extract statistically significant "features" for subsequent learning tasks. I will also highlight other benefits of the tensor network approach such as the flexibility to blend different approaches and to interpret trained models.
Letztmalig verändert: 18.06.2018, 02:07:11
Veranstaltungsort
Max-Planck-Institut für Physik komplexer Systeme (Seminarroom 1+2+3)Nöthnitzer Straße3801187Dresden
- Telefon
- + 49 (0)351 871 0
- MPI-PKS
- Homepage
- http://www.mpipks-dresden.mpg.de
Veranstalter
Max-Planck-Institut für Physik komplexer SystemeNöthnitzer Straße3801187Dresden
- Telefon
- + 49 (0)351 871 0
- MPI-PKS
- Homepage
- http://www.mpipks-dresden.mpg.de
Legende
- Ausgründung/Transfer
- Bauing., Architektur
- Biologie
- Chemie
- Elektro- u. Informationstechnik
- für Schüler:innen
- Gesellschaft, Philos., Erzieh.
- Informatik
- Jura
- Maschinenwesen
- Materialien
- Mathematik
- Medizin
- Physik
- Psychologie
- Sprache, Literatur und Kultur
- Umwelt
- Verkehr
- Weiterbildung
- Willkommen
- Wirtschaft
