Dirac fermion transport coupled with magnetic order in a layered antiferromagnet EuMnBi2
- Datum
- 25.07.2017
- Zeit
- 14:00 - 15:00
- Sprecher
- Prof. Hideaki Sakai
- Zugehörigkeit
- Osaka University, Japan
- Sprache
- en
- Hauptthema
- Physik
- Andere Themen
- Physik
- Host
- Prof. Dr. A. Mackenzie, Dr. C. Hicks
- Beschreibung
- Dirac fermions in solids have been of current interest for spintronic applications as well as basic science, because a variety of quantum transport phenomena manifest themselves in an external magnetic field. In addition to the half-integer quantum Hall effect (QHE) in graphene, more recently, the quantum anomalous Hall effect was observed for the surface Dirac state in magnetic topological insulator thin films [1]. To further unveil such a distinct quantum transport enriched by magnetic order, it is desirable to explore bulk systems that host various magnetism and dimensionality. In this work, as an ideal arena for magnetically-controllable Dirac fermions, we have focused on a layered bulk antiferromagnet EuMnBi2 [2,3], where the Bi1- layer hosting quasi 2D Dirac fermions and the magnetic blocking layer (Eu2+ and Mn2+-Bi3- layers) stack alternatively (inset to Fig. 1). From detailed transport measurements at high magnetic fields, we found that the antiferromagnetic order of the Eu sublattice has a marked impact on the transport properties. As shown in Fig. 1(a), the orientation of the ordered Eu moments can be controlled by applying magnetic fields along the c axis, which strongly modifies the interlayer coupling between the conducting Bi layers. When the Eu moments flop in the ab plane (H>Hf), zz increases by about one order of magnitude, followed by giant SdH oscillations [Fig. 1(b)]. This indicates that the 2D confinement of Dirac fermions is largely enhanced by flopping the Eu moments. In this high-zz state, interestingly, we observed plateau-like structures in the Hall resistivity concomitantly with deep minima in the in-plane resistivity, which signifies the half-integer QHE even in a bulk magnet [3]. I am also talking about some recent progresses on this material. [1] C-Z, Chang et al., Science 340, 167 (2013). [2] A. F. May et. al., Phys. Rev. B 90, 075109 (2014). [3] H. Masuda et al., Sci. Adv. 2, e1501117 (2016).
- Links
Letztmalig verändert: 25.07.2017, 09:45:49
Veranstaltungsort
Max-Planck-Institut für Chemische Physik fester Stoffe (Seminarraum 1+2, Nöthnitzer Straße 40, 01187 Dresden)Nöthnitzer Straße4001187Dresden
- MPI-CPfS
- Homepage
- http://www.cpfs.mpg.de/
Veranstalter
Max-Planck-Institut für Chemische Physik fester StoffeNöthnitzer Straße4001187Dresden
- MPI-CPfS
- Homepage
- http://www.cpfs.mpg.de/
Legende
- Ausgründung/Transfer
- Bauing., Architektur
- Biologie
- Chemie
- Elektro- u. Informationstechnik
- für Schüler:innen
- Gesellschaft, Philos., Erzieh.
- Informatik
- Jura
- Maschinenwesen
- Materialien
- Mathematik
- Medizin
- Physik
- Psychologie
- Sprache, Literatur und Kultur
- Umwelt
- Verkehr
- Weiterbildung
- Willkommen
- Wirtschaft
