Ma

On k-regular maps

Datum
20.01.2016
Zeit
17:00 - 18:00
Sprecher
Prof. Dr. Tadeusz Januszkiewicz
Zugehörigkeit
IMPAN, Warschau
Serie
TUD Dresdner Mathematisches Seminar
Sprache
en
Hauptthema
Mathematik
Andere Themen
Mathematik
Host
Prof. Dr. A. Thom
Beschreibung
A continuous map f:X\to R^n is called k-regular if for any k-tuple (x_1,...,x_k)of distinct points in X their images f(x_i) are affinely independent (i.e. f(x_i)-f(x_1) are linearly indepedent). When k=2 this means that f is an embedding, and the similarity with embedding theory was the reason topologists, starting with Karol Borsuk, were interested in such maps. On the other hand questions in approximation theory going back to Pafnuty Chebyshev, and studied among others by Andrei Kolmogorov, yield essentially the same class of maps. One of the first challenges isto construct such maps, and do it in an efficient way. Another challenge is to prove nonexistence results. For embeddings of R^d in R^n, this is not very interesting, but for bigger k even this case presents a challenge. Recently lower bounds on n(d,k) the minimum dimension of the euclidean space receiving a k-regular map from R^d, significantly improving previously known ones, were found by Blagoevic, Cohen, Lueck and Ziegler, using algebraic topology, while upper bounds were found bu Buczynski, Januszkiewicz, Jelisiejew and Michalek, using algebraic geometry. In some cases they meet, and provide the final answer. I will tell the story of these developments, highlighting the analogy with embeddings and immersions, and avoiding technicalities.
Links

Letztmalig verändert: 03.12.2015, 18:29:52

Veranstaltungsort

TUD Willers-Bau (WIL C 307)Zellescher Weg12-1401069Dresden
Homepage
https://navigator.tu-dresden.de/etplan/wil/00

Veranstalter

TUD MathematikWillersbau, Zellescher Weg12-1401069Dresden
Telefon
49-351-463 33376
Homepage
http://tu-dresden.de/mathematik
Scannen Sie diesen Code mit Ihrem Smartphone and bekommen Sie die Veranstaltung direkt in Ihren Kalender. Sollten Sie Probleme beim Scannen haben, vergrößern Sie den Code durch Klicken darauf.
  • AuAusgründung/Transfer
  • BaBauing., Architektur
  • BiBiologie
  • ChChemie
  • ElElektro- u. Informationstechnik
  • Sfür Schüler:innen
  • GsGesellschaft, Philos., Erzieh.
  • InInformatik
  • JuJura
  • MwMaschinenwesen
  • MtMaterialien
  • MaMathematik
  • MeMedizin
  • PhPhysik
  • PsPsychologie
  • KuSprache, Literatur und Kultur
  • UmUmwelt
  • VeVerkehr
  • WeWeiterbildung
  • WlWillkommen
  • WiWirtschaft